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1. Synchronized Bursting (SB) in Cultures
Ca image experiments
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2. A Possible Mechanism of SB
Electrophysiological experiments

3. Role of Glia
Culture staining and Ca image
experiments
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Neuron — an excitable element
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Connection between neurons: Synapses
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Different Approaches

op Down
e fMRI, MEG
e Brain Waves

Bottom Up
e Neuronal Cultures



Important Issues for Neuroscience

Good to understand:

 Dynamics of Synapses

e Topology of Neural Networks

 Dynamics of Neural Networks
-> Brain functions?



But we do not even
understand Epilepsy!

(synchronization?)

Brain=scan of 3 person with
frontal lobe epilepsry. Arrow
points to the focus ofsezure
actwvity. [Image reproduced
wiith permission from Seeck
et al. (1922 Electroenceph.
Clin. Heuraphys, 106, S3-
212 ]
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Our Goals

* Synchronization in neural networks seems to be
generic and robust.

e Generate synchronization in neuronal networks
and try to understand it



Primary Neuronal Cultures in the
view of a Physicist

e Growing (random?) Networks

e Self-organized assembly of identical
nonlinear elements

e Generic Synaptic dynamics + Topology
&> (Network Synchronization) ?



Synchronous Bursting
iInduced by low [Mg**]
(Muramoto 1988)
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Figure L-1: NMDA and Non-NMDA Receptors
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A) The NMDA receptor is usually blocked by the Mg?* ion. Pos-
itive ions are unable to rush in even if glutamate binds to
NMDA unless the Mg2* ion is removed by an increase in the
cell voltage.

B) The non-NMDA receptor opens as soon as glutamate binds
to it. Opening of the non-NMDA receptor allows the entry of
positive ions into the cell.

http://www.stanford.edu/group/hopes/treatmts/antiglut/f _I01nmdarcptr.gif



Cell Culture
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Growth of Network




Control parameters

* Age of culture - physical connections
 [Mg**] = synaptic (signal) connections

* No. photolysis > Number of nodes



What have we done?

* Prepare Ic:or}ical Control of network
neuronal culture connections:

* Produce SF by low Mg

condition - Mg concentration

- growth condition

 Monitor of network - physically removing
behavior connections by

- Ca |mag|ng UV laser
- electrophysiology
measurement



Experimental Setup
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The set-up of experiments

UV Laser Incubator

machine

Intensify CCD

Laser optic route



Calcium Measurement with
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Random Firing
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Synchronized Firing




Sample fluorescence intensity data of the synchronized
firing of a neuronal network.
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Bursting Pulse (Universal)
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Many Spikes in one pulse




Synchronized Firing (SF) in
Light emitted measured by photo
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Critical Firing Density and time
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Network Reconstruction
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Network Topology




Connectivity and Topology
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Recogostructed Connectivity
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Dying Network
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Death
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Experiments of critical range of Synchronous Firing




Experiments of critical range of Synchronous Firing

UV Killing process

Cell Density (cells/ml)

with kill process

50x 107 1.0 x 10° 1.9 x 10° 2.6x 10°
SF frequency pattern
bf Trcgucncy decrease 4 Y ) 0
with kill process
SF frcgucncy does not change ) 7 ) )
with kill process
SF frequency increase | 0 | )
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Summary |

Bursting frequency increases with DIV
Bursting frequency decreases with [Mg**]
Physical Connection increases with DIV
Signal Connection decreases with [Mg™]

Connectivity induced synchronization



Mechanism of SF?
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We study the dynamics of the excitable Fitz Hugh—Nagumo system under external noisy driving.
Noise activates the system producing a sequence of pulses. The coherence of these noise-induced
oscillations 15 shown to be maximal for a certain noise amplitude. This new effect of coherence
resonance 15 explained by different noise dependencies of the activation and the excursion times.
A simple one-dimensional model based on the Langevin dyvnamics 1s proposed for the quantitative
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Coherence Resonance In Excitable
systems
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Phase synchronization in coupled nonidentical excitable syvstems
and arrav-enhanced coherence resonance

Bambi Hu'* and Changsong Zhou!
'Department of Physics and Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong, China
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(Recerved 28 September 1900)

We study the dynamics of a lattice of coupled nomidentical Fitz Hugh-Nagumo system subject to mdepen-
dent external noise. It 15 shown that these stochastic oscillators can lead to global synchromization behavior
without an external signal. With the increase of the noise intensity, the system exhibits coherence resonance
behavior. Coupling can enhance greatly the noise-induced coherence 1n the system.
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Ch4)

FitzHugh-Nagumo neurons in a M XN lattice 1s represented
as follows:
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FIG. 4. A time series of xy; with N=M=10, g=0.06, and D
=40%x107° in a state of a coherence resonance oscillation sus-
tamned by noise and coupling.
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Patch Clamp Experiments




Firings from Non-SB Neurons

T
35000



Histogram of |S|

_ _ R
1050 2000 Z0ac




Firings from SB neurons
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Artificially generated input
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Spiking Statistics

Non-SB neurons
-> random firing (intrinsic noise)
-> random bursting? (network noise?)

SB- Neurons
- two time scales
- Intrinsic action potential time scale
- Time between bursts

Array-Enhanced Coherent Resonance (AECR)
-> global synchronization, time scale of action potential






Electrophysiology result
(whole-cell recording, current-clamp)

Glia and neuron mixed culture (8DI1V, 5X10°)

mV
-60

2S



Good synchronization among
bursts but no synchronization
among spikes
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Summary |

e Synchronized burstings are induced by the
Increase In network connectivity

e There are both noises from the nodes and
the network.

e Similar to AECR only in the burst level not
In the spikes level



Role of Glia?
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Tripartite Synapse
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Bursting of neurons induced by inhibitory mechanism
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Effect of Connectivity
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Effects of Noise-missing spikes
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Culture Experiments

Glia-suppressed Neuron-glia Glia-enhanced cultures
cultures cocultures (NGCs) (GECs)
(GSCs)
Treatment | NB/B27 GCM NB/B27 Pre-plate Post-plate
GS5Cs | NGCs

Table. 1 Summary of the culture preparations



1. Immunostaining results: NGCs

7DIV, plate cell density:

~700 cells/mm?

(A) red, anti-MAP2 (neuronal marker)
(B) green, anti-GFAP (glia marker)
(C) phase contrast image

(D) merged (A) (B) (C)

scale bar: 20 (£ M



/DIV, GSCs

plate cell density: 1000 mm?
(A) AraC only (B) AraC+GCM




GECs, 7DIV

plate cell density: 1000 cells/mm?

astrocytes density: ~200 cells/mm?

A B

(A) pre-plate glia
Scale bar; 20 u m (B) post-plate glia (GSCs)



Summary Il

e Glia are NOT needed to generate synchronized
bursting - network behaviour? - inhibitory
connections?

 Forms of bursting are different with and without
glia = change in topology(synaptic connection?)?

e Post-plated glia seem to suppress SB
- different forms of astrocytes?






Green: anti-VGAT
(vesicular GABA

S transporter, 1:1000)
B Rcd:anti-VGLUT?

(vesicular glutamate
transporter, 1:1000)

Cultured condition: GSCs,
18DIV, 200 cells/mm?

: scale bar: 20 u m



Open Questions

e How to understand the different time
scales?

e \What is the inhibitory mechanism?

* Role of glia?



